서울대병원, 관절염 환자의 근감소증 예측하는 인공지능 모델 개발
서울대병원이 하지 엑스레이(X-ray)와 피검사로 관절염 환자의 근감소증을 정확히 예측할 수 있는 인공지능 모델을 개발했다.
서울대병원 정형외과 노두현 교수팀(황두현 수련의, 안성호 학생)은 인공지능인 합성곱 신경망과 기계학습의 분류 모델을 복합적으로 이용해 수술 전 하지 X-ray와 피검사 결과만으로 근감소증을 예측할 수 있는 알고리즘 모델을 개발했다고 5일 밝혔다.
근감소증은 노화에 따라 근육량이 줄어들고 근육 기능이 저하되는 질환으로, 낙상, 골절, 수술 후 합병증의 대표적인 위험인자로 꼽힌다. 이에 수술 전 선제적으로 근감소증 환자를 선별하고 치료를 제공하는 것이 중요하다.
이에 연구팀은 수술 이력이 없는 건강한 지원자 227명의 하지 X-ray 사진을 사용해 자동 근육 분할(X-ray 사진에서 근육에 해당하는 부분을 구획화해 나타낸 것) 역할을 수행하는 딥 러닝 예측 모델을 개발했다.
예측 모델은 하지 X-ray 사진으로부터 근육을 분할해 환자의 전신 근육량을 추산한다. 그리고 이를 포함한 총 7개의 변수(예측 전신 근육량, 체질량지수, 빌리루빈, 헤모글로빈, 알부민, 단백질, 나이)를 활용해 근감소증을 예측한다.
연구팀이 이 모델을 활용해 퇴행성 무릎 관절염 치료를 위해 슬관절 전치환술(Total Knee Arthroplasty, 이하 TKA)을 앞둔 환자 403명을 테스트한 결과, 딥 러닝 모델이 하지 X-ray 사진의 자동 근육 분할 측면에서 전문의가 표시한 것과 다름없는 높은 성능을 보이는 것을 확인했다. 또한 근감소증 예측 모델의 검증 단계에서 해당 모델의 예측 능력(AUC: Area Under Curve)의 수치는 0.98로 우수한 성능을 보였다.
특히 근감소증을 예측하는 7개의 변수 중 PMV(예측 전신 근육량) 값은 근감소증을 판별하는 기능에서 가장 중요한 변수로 확인됐다.
이번 연구는 국제 SCI 학술지 ‘임상의학학술지(Journal of Clinical Medicine)’ 최근호에 게재됐다.
서울대병원은 이번 연구가 CT, MRI 영상 촬영이나 체성분 분석, 골다공증 검사와 같은 별도의 진단을 통해 확인하던 근감소증을 수술 전 간단한 X-ray와 피검사로 확인할 수 있다는 점에서 의의가 크다고 설명했다.
노두현 교수는 “본 기술을 활용해 무릎 인공관절 치환술뿐만 아니라 다양한 정형외과 수술을 받는 환자의 근감소증을 정확히 예측할 수 있을 것”이라며 “그 결과에 따라 적절한 치료를 제공할 수 있기를 기대한다”고 말했다.