-
KAIST(카이스트)와 토론토대 공동 연구진이 머신러닝과 나노 3D 프린팅을 활용해 강철 강도와 스티로폼 경량성을 갖춘 나노 격자 구조 첨단 소재 개발했다.
KAIST는 유승화 기계공학과 교수 연구팀이 토빈 필레터 캐나다 토론토대 교수(Prof. Tobin Filleter) 연구팀과 협력해 높은 강성과 강도를 유지하면서도 경량성을 극대화한 나노 격자 구조를 개발했다고 18일 밝혔다.
연구팀은 이번 연구에서 격자 구조의 보(beam) 형상을 최적화해 경량성을 유지하면서도 강성과 강도를 극대화하는 방안을 모색했다.
다목적 베이지안 최적화(Multi-objective Bayesian Optimization) 알고리즘을 활용해 인장 및 전단 강성 향상과 무게 감소를 동시에 고려하는 최적 설계를 수행했다. 기존 방식보다 적은 데이터(약 400개)만으로도 최적의 격자 구조를 예측하고 설계할 수 있음을 입증했다.
다목적 베이지안 최적화 알고리즘은 여러 목표를 동시에 고려해 최적의 해결책을 찾는 방법으로, 불확실도가 있는 상황에서도 효율적으로 데이터 수집과 결과 예측을 반복하며 최적화를 진행한다.
연구팀은 나아가 나노 스케일에서는 크기가 작아질수록 기계적 특성이 향상되는 효과를 극대화하기 위해 높은 온도에서 유기물을 분해해 얻는 탄소 물질인 열분해 탄소(pyrolytic carbon) 소재를 활용해 초경량·고강도·고강성 나노 격자 구조를 구현했다.
이를 위해 레이저 빔을 이용해 특정 파장의 두 개의 광자가 동시에 흡수될 때만 중합 반응이 일어나도록 하는 이광자 중합(two-photon polymerization, 2PP) 기술을 적용해 복잡한 나노 격자 구조를 정밀하게 제작했다. 기계적 성능 평가 결과 해당 구조가 강철에 버금가는 강도와 스티로폼 수준의 경량성을 동시에 갖추고 있음을 확인했다.
또 멀티포커스 이광자 중합(multi-focus 2PP) 기술을 이용해 나노스케일의 정밀도를 유지하면서도 밀리미터 스케일의 구조물 제작이 가능함을 연구팀은 입증했다.
유승화 KAIST 교수는“데이터 기반 최적화 설계와 정밀 3D 프린팅 기술을 융합한 이 기술은 항공우주 및 자동차 산업의 경량화 수요에 부응할 뿐만 아니라, 맞춤형 설계를 통한 다양한 산업 응용 가능성을 열어갈 것으로 기대된다”라고 강조했다.
이번 연구는 피터 설레스 박사(Dr. Peter Serles)와 여진욱 KAIST 박사가 공동 제1 저자로 연구를 주도했으며, 유승화 교수와 토빈 필레터 교수가 교신 저자로 참여했다.
연구 결과는 세계적인 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에 지난달 23일 게재됐다.
- 구아현 기자 ainews@chosun.com