KAIST, 성능 4배 높인 AI 반도체 두뇌 개발
KAIST-미국 조지아 공대-스웨덴 웁살라대 공동 연구
기존 GPU 대비 연산속도 4.1배, 전력 소비 2.2배 절감
KAIST·국제 공동연구진이 대형언어모델(LLM)의 추론 속도는 4배 높이면서 전력 소비는 2.2배 줄인 반도체 핵심 두뇌 기술을 개발했다.
KAIST는 박종세 전산학부 교수 연구팀이 미국 조지아 공과대, 스웨덴 웁살라대와 공동연구를 통해, 차세대 인공지능(AI) 모델의 두뇌 역할을 하는 ‘AI 메모리 반도체(PIM, Processing-in-Memory)’ 기반 기술 ‘PIMBA’를 개발했다고 17일 밝혔다.
현재 챗GPT, 클로드, 제미나이, 라마 등 LLM은 모든 단어를 동시에 보는 ‘트랜스포머’ 두뇌 구조를 기반으로 작동한다. 이에 따라, AI 모델이 커지고 처리 문장이 길어질수록 연산량과 메모리 요구량이 급증해, 속도 저하와 에너지 소모가 주요 문제로 지적돼 왔다.
이런 트랜스포머 문제점을 보완하기 위해 최근 제시된 순차형 기억형 두뇌인 ‘맘바(Mamba)’ 구조는 시간의 흐름에 따라 정보를 처리하는 방식을 도입해 효율을 높였지만, 여전히 메모리 병목 현상과 전력 소모 한계가 남아 있었다.
연구팀은 트랜스포머와 맘바의 장점을 결합한 ‘트랜스포머–맘바 하이브리드 모델’의 성능을 극대화하기 위해, 연산을 메모리 내부에서 직접 수행하는 새로운 반도체 구조 ‘PIMBA’를 설계했다.
기존 GPU 기반 시스템은 데이터를 메모리 밖으로 옮겨 연산을 수행하지만, PIMBA는 데이터를 옮기지 않고 저장장치 내부에서 바로 계산을 수행한다. 이로써 데이터 이동 시간을 최소화하고 전력 소모를 크게 줄일 수 있다.
그 결과, 실제 실험에서 PIMBA는 기존 GPU 시스템 대비 처리 성능이 최대 4.1배 향상되었고, 에너지 소비는 평균 2.2배 감소하는 성과를 보였다.
연구 결과는 20일 서울에서 열리는 글로벌 컴퓨터 구조 학술대회 ‘제58회 국제 마이크로아키텍처 심포지엄(MICRO 2025)’에서 발표될 예정이다. 이 논문은 앞서 ‘제31회 삼성휴먼테크 논문대상’ 금상을 수상했다.